Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 651
Filtrar
1.
Food Chem ; 448: 139176, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574719

RESUMO

Using 3D printing technology, a gelatin-polyvinyl alcohol­carbon dots (GPC) layer+corn starch-polyvinyl alcohol-cinnamon essential oil (CPC) layer active bilayer film with an external barrier function and an internal controlled-release effect was successfully produced for food preservation. The GPC film was provided with potent antioxidant and UV blocking properties by the banana peel carbon dots (CDs). The cinnamon essential oil (CEO) had the strongest interaction with the film matrix at 3% (w/w), causing the CPC film having the lowest surface wettability, good integrity, and lowest crystallinity. The CEO's stability and releasing effectiveness were greatly enhanced by the creation of a bilayer film. At 60% filling rate of the CPC layer, the bilayer film showed the highest CEO retention after drying and the best CEO release performance. Finally, the created active bilayer film was found to significantly improve the sensory quality stability of the spicy essential oil microcapsule powders. It also successfully extended the mangoes' shelf life by delaying browning and rot.


Assuntos
Cinnamomum zeylanicum , Embalagem de Alimentos , Gelatina , Musa , Óleos Voláteis , Impressão Tridimensional , Amido , Óleos Voláteis/química , Embalagem de Alimentos/instrumentação , Cinnamomum zeylanicum/química , Gelatina/química , Amido/química , Musa/química , Carbono/química , Conservação de Alimentos/instrumentação , Conservação de Alimentos/métodos , Pontos Quânticos/química , Zea mays/química
2.
Trop Anim Health Prod ; 56(4): 139, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656618

RESUMO

We aimed to evaluate the effects of different drying methods for banana residues on the energy metabolism and respirometry of growing lambs. Twenty Santa Inês x Dorper lambs were fed five experimental diets: Tifton 85 grass hay (Control), shade-dried banana leaf hay (LH Shade), shade-dried pseudostem banana hay (PH Shade), sun-dried banana leaf hay (LH Sun), and sun-dried banana pseudostem hay (PH Sun). Nutrient intake and digestibility were assessed in metabolic cages, whereas O2 consumption and CO2, methane, and heat production were measured in a respirometry chamber with animals fed at maintenance and ad libitum levels. Nutrient and energy intake was not influenced by diet. Pseudostem hay had higher apparent digestibility of dry matter (71.5%), organic matter (72.4%), and neutral detergent fiber (58.0%). However, this led to greater energy loss in the form of methane (12.1%). The banana residue hays and drying methods did not alter oxygen consumption, CO2 production, or heat production of animals fed ad libitum or during maintenance. On the other hand, the use of leaf hay resulted in a reduction of 24.7% in enteric methane production of animals fed ad libitum. The inclusion of pseudostem hay is recommended in sheep feedlot diet. This residue provided greater use of DM, however promoted a greater loss of energy in the form of methane, resulting in similar energy consumption. The drying methods did not reduce the availability of nutrients and the sun drying method is recommended, since it is a faster drying method.


Assuntos
Ração Animal , Dieta , Digestão , Metabolismo Energético , Musa , Animais , Musa/química , Ração Animal/análise , Dieta/veterinária , Masculino , Carneiro Doméstico/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Consumo de Oxigênio , Dessecação
3.
Int J Biol Macromol ; 264(Pt 1): 130462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423435

RESUMO

Banana starch has attracted significant attention due to its abundant content of resistant starch. This study aims to compare the multiscale structure and functional properties of banana starch obtained from five cultivated varieties and investigate the impact of dielectric barrier discharge cold plasma (DBD) treatment on these starch characteristics. All five types of natural banana starch exhibited an elliptical and irregular shape, conforming to the CB crystal structure, with a bimodal distribution of branch chain lengths. The resistant starch content ranged from 88.9 % to 94.1 %. Variations in the amylose content, amylopectin branch chain length distribution, and structural characteristics resulted in differences in properties such as gelatinization behavior and sensitivity to DBD treatment. The DBD treatment inflicted surface damage on starch granules, reduced the amylose content, shortened the amylopectin branch chain length, and changed the relative crystallinity to varying degrees. The DBD treatment significantly increased starch solubility and light transmittance. Simultaneously, it resulted in a noteworthy decrease in peak viscosity and gelatinization enthalpy of starch paste. The in vitro digestibility test showed that 76.2 %-86.5 % of resistant starch was retained after DBD treatment. The DBD treatment renders banana starch with reduced viscosity, increased paste transparency, enhanced solubility, and broadens its potential application.


Assuntos
Musa , Gases em Plasma , Amido/química , Amilopectina/química , Amilose/química , Musa/química , Gases em Plasma/química , Amido Resistente , Viscosidade
4.
Int J Biol Macromol ; 254(Pt 1): 127748, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38287591

RESUMO

Banana starch has a highly resistant starch (RS) and slow-digested starch (SDS) content, making it attractive as a functional ingredient. Unfortunately, banana starch requires modification processes due to the loss of RS and SDS during gelatinization because of its thermolabile characteristics. This study explores the effect of banana starch modification by enzymatic, heat moisture treatment (HMT) and dual modification (HMT+ enzymatic) on its nutritional (RS, SDS) and functional properties (hydration, structural, gelation, rheological). HMT and dual modifications decrease RS (from 44.62 g/100 g to 16.62 and 26.66 g/100 g, respectively) and increase SDS (from 21.72 g/100 g to 33.91 and 26.95 g/100 g, respectively) in raw starch but induce structural changes that enhance RS (from 3.10 g/100 g to 3.94 and 4.4 g/100 g, respectively) and SDS (from 2.58 g/100 g to 9.58 and 11.48 g/100 g) thermo-resistance in gelled starch. Also, changes in the functional properties of starches were evidenced, such as weaker gels (hardness < 41 g), lower water absorption (<12.35 g/g), high starch solubility (>1.77 g/100 g) and increased gelatinization temperature. Improved gelatinization temperature and RS thermostability resulted from modifications that could expand banana starch applications as a beverage and compote thickener agent.


Assuntos
Musa , Amido , Amido/química , Musa/química , Fenômenos Químicos , Solubilidade , Temperatura , Amido Resistente , Temperatura Alta
5.
Int J Biol Macromol ; 258(Pt 2): 128989, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154717

RESUMO

Pectin is a polysaccharide mainly used in food processing industries as an emulsifier, thickener, stabilizer and in pharmaceuticals as an excipient, wall material and bio adhesive for improving delivery and efficiency. Raising demand for pectin, pushes to explore unconventional plant-based sources for the extraction of pectin. This work is aimed to explore the possibility of extracting pectin from the peel of banana varieties and to decipher the chemical and techno-functional properties. Among the varieties, Nendran, a plantain banana recorded higher pectin recovery (23.42 %), swelling power (23.10 gg-1), anhydrouronic acid (AUA) content (72.86 %) and emulsifying activity (46.19 %). Pectin from the banana peels exhibited the equivalent weight (g/mol) ranging from 943.40 (var. Bhimkol) to 1282.05 (var. Nendran). Morphological observations revealed that the extracted pectin has fragments with uneven sizes and inter-particle voids in the structure. Banana pectin behaved similar to commercial pectin in terms of rheological, textural and structural profiles. HPLC analysis and NMR spectra confirmed the dominance of galacturonic acid in the banana peel pectins. The study unveiled and opened up the avenues of utilizing banana peel as a complementary biomass for the extraction of pectin which could be used in different industrial applications.


Assuntos
Musa , Pectinas , Pectinas/química , Musa/química , Polissacarídeos , Emulsificantes/química
6.
J Ethnopharmacol ; 322: 117639, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38135229

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The stem of Musa paradisiaca (plantain) has found application in traditional medicine for the treatment of diabetes, inflammation, ulcers and wound injuries. AIM OF THE STUDY: This study investigated the phytochemical composition, toxicity profile, wound healing, anti-inflammatory and analgesic effects of aqueous Musa paradisiaca stem extract (AMPSE) in rats. METHODS: Phytochemical analysis of methanol-MPSE was performed by gas chromatography-mass spectrometry (GC-MS). Acute toxicity testing was carried out through oral administration of a single dose of AMPSE up to 5 g/kg. Four separate groups of rats were used for the subacute toxicity testing (n = 6). Group 1 served as a normal control and did not receive AMPSE, groups 2-4 received AMPSE daily by gavage for 28 days. In the experiments with excision and incision wounds, the rats were treated with 10 w/w AMPS extract. The anti-inflammatory and analgesic effects of AMPSE were assessed using egg albumin-induced paw oedema and acetic acid-induced writhing methods, respectively. For the subacute, anti-inflammatory and analgesic studies, AMPSE was administered to the experimental rats at doses of 300, 600 and 900 mg/kg body weight. RESULTS: Bioactive compounds identified include ß-sitisterol, n-hexadecanoic acid, octadecanoic acid, diethyl sulfate, p-hydroxynorephedrine, phenylephrine, nor-pseudoephedrine, metaraminol, pseudoephedrine and vanillic acid. No signs of toxicity and no deaths were observed in all the groups. For the groups treated with AMPSE for 28 days, a significant reduction in alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea, sodium, chloride, total cholesterol, triglycerides, and low-density lipoprotein cholesterol were observed while high density lipoprotein cholesterol, glutathione and superoxide dismutase increased compared to control (p < 0.05). In wound healing experiments, AMPSE showed greater percent wound contraction and wound resistance fracture compared to the povidone-iodine (PI) treated and control groups. Treatment with 900 mg/kg AMPSE resulted in significant (p < 0.05) anti-inflammatory and analgesic effects compared to the control. CONCLUSION: This study shows that AMPSE is not toxic but contains biologically active compounds with hepatoprotective, anti-inflammatory, lipid-lowering and wound-healing effects. Treatment of rats with AMPSE has shown that AMPSE has anti-inflammatory, analgesic, hepatoprotective, lipid-lowering and wound-healing effects, supporting its therapeutic use in ethnomedicine.


Assuntos
Musa , Musaceae , Plantago , Ratos , Animais , Musa/química , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade , Pseudoefedrina/farmacologia , Analgésicos/uso terapêutico , Analgésicos/toxicidade , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/toxicidade , Cicatrização , Colesterol/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/toxicidade , Lipídeos/farmacologia
7.
ScientificWorldJournal ; 2023: 8898045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808477

RESUMO

Natural polymers such as pectin have gained increased utilization in pharmaceutical and biotechnology sectors because they are affordable, easily accessible, nontoxic, and chemically modifiable, with the potential to be biodegradable and biocompatible. Musa paradisiaca (plantain) peels make up 30-40% of the overall weight of the fruit. The extraction of pectin from these residues can therefore be viewed as a possible waste of wealth. This study, therefore, focused on evaluating the suspending properties of pectin obtained from Musa paradisiaca (plantain) peels (through acid and alkaline extraction) and presented an alternative suspending agent in the pharmaceutical formulation of suspensions. The unripe peels of Musa paradisiaca were acquired and authenticated at the Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. Pectin was extracted from the peels using both acid and alkaline extraction processes, respectively, characterized, and evaluated for its phytochemical properties. Different concentrations of the acid and alkaline pectin extracts were employed as a suspending agent in paracetamol suspensions, using acacia gum as a standard. The pectin yields obtained were 4.88% and 7.61% for the acid and alkaline extraction processes, respectively, while phytochemical screening revealed the presence of glycosides, tannins, saponins, and phenols in both extracts. The alkaline pectin extract recorded higher equivalent weight, degree of esterification, ash content, and crude content than the acid pectin extract, while FTIR identified similar functional groups in both acid and alkaline pectin extracts. The test suspensions reported significant differences (P < 0.05) in flow rates, ease of redispersion, sedimentation volumes, and rates compared with acacia gum. Moreover, when the acid and alkaline pectin extracts were compared, significant differences (P < 0.05) were observed in sedimentation rates and sedimentation volumes, suggesting that the extraction method may affect suspending properties. Ultimately, the alkaline pectin extract had better suspending properties than the acid pectin extract; however, they both can be used as an alternative to acacia gum as a suspending agent.


Assuntos
Musa , Farmácia , Plantago , Pectinas , Excipientes/química , Musa/química , Composição de Medicamentos , Goma Arábica , Compostos Fitoquímicos
8.
Int J Biol Macromol ; 249: 126125, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37541477

RESUMO

Banana starch is explored for its use in food and pharmaceutical applications. In this study, in order to improve the techno-functional properties of native banana starch (NS), different chemical modifications namely acid thinning (AT), oxidation (OX), sodium-trimetaphosphate method (STMP), cross linking phosphorylation (CLP), hydroxypropylation (HYP) were employed. Among the modified starches, amylose content was higher in CLP starch and the least was observed in AT. Resistant starch (RS) of HYP (65.38 %) and CLP starches (62.76 %) were significantly higher than other modified starches. Lesser amylose, higher water solubility and lower swelling of AT starch resulted in inferior paste clarity and inability to make a firm gel. Non-Newtonian behaviour of starch gels were observed from static viscosity observations. The dynamic rheological behaviour of the starch gels affirmed the higher gel strength of STMP (0.46) and CLP (0.56) starches. Imperfection and exo-corrosion in starch morphology was observed through SEM and influence of chemicals on the starch structure was elucidated through FTIR and XRD analyses. Except AT starch, modified starches with higher RS resulted in lowering glycemic index (57-69 %). STMP starches recorded highest prebiotic activity score of 0.88. Chemical modifications enable to enhance the functionalities of banana starch and offers potential industrial uses.


Assuntos
Amilose , Musa , Amilose/química , Musa/química , Amido/química , Solubilidade , Viscosidade , Amido Resistente
9.
Plant Foods Hum Nutr ; 78(3): 520-525, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37477732

RESUMO

Musa balbisiana Colla belongs to the family Musaceae which is well-known for its nutritional and pharmacological properties. Here, we have analysed the phytochemical content and evaluated the nutritional, antioxidant, anti-glycation, α-amylase, and α-glucosidase inhibition potential. Moreover, for the first time, we have studied the bioenergetic profiles of the bioactive fractions of M. balbisiana seeds extract against oxidative stress-related mitochondrial and cellular dysfunction using XFe24 extracellular flux analyzer. M. balbisiana seeds have high nutritional values with significant levels of carbohydrates, starch, protein, and minerals (Ca, Na, Mg, Cu, Fe, and Zn). Bioactivity-guided fractionation of the methanolic extract of M. balbisiana seeds revealed that the ethyl acetate fraction (EAF) showed the highest antioxidant, anti-glycation, and phytochemical content as compared to other fractions. Moreover, the EAF showed a lower α-amylase inhibition and a higher α-glucosidase inhibitory activity. Most importantly, our GC-MS analyses of EAF revealed the presence of unique and previously unreported 14 phytochemical compounds. A strong correlation between the biological activities and total phenolic/tannin content was observed. In addition, the bioactive fraction of M. balbisiana seeds (EAF) improved the bioenergetic profiles of free fatty acid-induced oxidative stress with a concomitant increase in ATP production, and respiratory and glycolytic capacity. Altogether, our findings suggest that M. balbisiana seeds can be used as a natural supplement to boost antioxidant levels and combat oxidative stress and non-enzymatic glycation.


Assuntos
Antioxidantes , Musa , Antioxidantes/metabolismo , Musa/química , Extratos Vegetais/química , alfa-Glucosidases/metabolismo , Sementes/química , Metabolismo Energético , alfa-Amilases , Compostos Fitoquímicos/análise
10.
Carbohydr Polym ; 312: 120825, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059552

RESUMO

Perishability caused by natural plant hormone ethylene has attracted great attention in the field of fruit and vegetable (F&V) preservation. Various physical and chemical methods have been applied to remove ethylene, but the eco-unfriendliness and toxicity of these methods limit their application. Herein, a novel starch-based ethylene scavenger was developed by introducing TiO2 nanoparticles into starch cryogel and applying ultrasonic treatment to further improve ethylene removal efficiency. As a porous carrier, the pore wall of cryogel provided dispersion space, which increased the area of TiO2 exposed to UV light, thereby endowing starch cryogel with ethylene removal capacity. The photocatalytic performance of scavenger reached the maximum ethylene degradation efficiency of 89.60 % when the TiO2 loading was 3 %. Ultrasonic treatment interrupted starch molecular chains and then promoted their rearrangement, increasing the material specific surface area from 54.6 m2/g to 225.15 m2/g and improving the ethylene degradation efficiency by 63.23 % compared with the non-sonicated cryogel. Furthermore, the scavenger exhibits good practicability for removing ethylene as a banana package. This work provides a new carbohydrate-based ethylene scavenger, utilizing as a non-food contact inner filler of F&V packaging in practical applications, which exhibits great potential in F&V preservation and broadens the application fields of starch.


Assuntos
Musa , Nanocompostos , Amido/química , Musa/química , Criogéis , Embalagem de Alimentos , Etilenos , Nanocompostos/química
11.
Bioresour Technol ; 376: 128910, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940875

RESUMO

Glutathione, a tri-peptide (glutamate-cysteine-glycine) with the thiol group (-SH), is most efficient antioxidative agent in eukaryotic cells. The present study aimed to isolate an efficient probiotic bacterium having the potential to produce glutathione. The isolated strain Bacillus amyloliquefaciens KMH10 showed antioxidative activity (77.7 ± 2.56) and several other essential probiotic attributes. Banana peel, a waste of banana fruit, is chiefly composed of hemicellulose with various minerals and amino acids. A consortium of lignocellulolytic enzyme was used for the saccharifying banana peel to produce 65.71 g/L sugar to support the optimal glutathione production of 181 ± 4.56 mg/L; i.e., 1.6 folds higher than the control. So, the studied probiotic bacteria could be an effective resource for glutathione; therefore, the stain could be used as natural therapeutics for the prevention/treatment of different inflammation-related gastric ailments and as an effective producer of glutathione using valorized banana waste that has excellent industrial relevance.


Assuntos
Bacillus amyloliquefaciens , Musa , Probióticos , Musa/química , Antioxidantes/química , Glutationa
12.
J Sci Food Agric ; 103(9): 4329-4339, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36799097

RESUMO

BACKGROUND: The consumption of green banana flour (GBF) products has been linked to reduced glycemic index (GI) and low risk of type 2 diabetes and obesity. The purpose of this study was to investigate the effect of micronization (high-intensity infrared heating method) on the molecular, microstructure and in vitro starch digestibility of five GBF cultivars grown in South Africa. The GBF was micronized at three surface temperatures (90, 120 and 150 °C for 30 min) and the in vitro starch digestibility was determined with Megazyme kits. RESULTS: Micronization at the highest temperature (150 °C) increased the swelling power by 6.00% in all five GBF cultivars when compared to control (unmicronized GBF). Micronization slightly reduced the resistant starch (RS) of the GBF cultivars by up to 8.63%. The FHIA-01 cultivar showed the highest RS (86.50%), whereas Grande Naine - 150 °C cultivar had the lowest RS (76.00%). Both micronized and control GBF exhibited similar X-ray diffraction patterns with all cultivars and at all micronization temperatures. Similarly, the functional properties of the GBF were not altered by micronization when observed with Fourier transform infrared spectroscopy. Scanning electron microscopy showed changes in the surface morphology of starch granules after micronization and these were dependent on temperature. CONCLUSION: Overall, micronization at 120 °C showed the best improvement in functional properties of GBF and this makes it suitable for potential application for the manufacture of instant breakfast products, baked goods and pasta. In addition, the micronized GBF cultivars retained high RS, suggesting potential health benefits for people with diabetes and obesity. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Diabetes Mellitus Tipo 2 , Musa , Humanos , Amido/química , Musa/química , Farinha , Amido Resistente , Obesidade
13.
Plant Cell ; 35(5): 1408-1428, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36748200

RESUMO

Banana (Musa acuminata) fruits ripening at 30 °C or above fail to develop yellow peels; this phenomenon, called green ripening, greatly reduces their marketability. The regulatory mechanism underpinning high temperature-induced green ripening remains unknown. Here we decoded a transcriptional and post-translational regulatory module that causes green ripening in banana. Banana fruits ripening at 30 °C showed greatly reduced expression of 5 chlorophyll catabolic genes (CCGs), MaNYC1 (NONYELLOW COLORING 1), MaPPH (PHEOPHYTINASE), MaTIC55 (TRANSLOCON AT THE INNER ENVELOPE MEMBRANE OF CHLOROPLASTS 55), MaSGR1 (STAY-GREEN 1), and MaSGR2 (STAY-GREEN 2), compared to those ripening at 20 °C. We identified a MYB transcription factor, MaMYB60, that activated the expression of all 5 CCGs by directly binding to their promoters during banana ripening at 20 °C, while showing a weaker activation at 30 °C. At high temperatures, MaMYB60 was degraded. We discovered a RING-type E3 ligase MaBAH1 (benzoic acid hypersensitive 1) that ubiquitinated MaMYB60 during green ripening and targeted it for proteasomal degradation. MaBAH1 thus facilitated MaMYB60 degradation and attenuated MaMYB60-induced transactivation of CCGs and chlorophyll degradation. By contrast, MaMYB60 upregulation increased CCG expression, accelerated chlorophyll degradation, and mitigated green ripening. Collectively, our findings unravel a dynamic, temperature-responsive MaBAH1-MaMYB60-CCG module that regulates chlorophyll catabolism, and the molecular mechanism underpinning green ripening in banana. This study also advances our understanding of plant responses to high-temperature stress.


Assuntos
Musa , Temperatura , Musa/genética , Musa/química , Musa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
14.
Food Chem ; 413: 135575, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764160

RESUMO

Inhibition of peel de-greening in postharvest bananas under high temperature storage, resulting in green ripening, causes significant deterioration in fruit quality. Herein, we reported that cold treatment accelerated chlorophyll degradation of postharvest banana fruit at 30 °C, which was associated with the upregulated expression of MaCBR (Chlorophyll b reductase) and MaSGR1 (Stay-green 1). Moreover, cold treatment increased the expression of C-repeat binding factor MaCBF1. MaCBF1 bound directly to the promoters of MaCBR and MaSGR1 and activated their expressions. More importantly, transient expression of MaCBF1 in bananas enhanced chlorophyll degradation and weakened the repression of de-greening caused by high temperature. In summary, the cold treatment promotes chlorophyll catabolism by activating MaCBF1-induced transcriptional activation of MaCBR and MaSGR1, and attenuates high temperature-caused green ripening in bananas. These results study expand the understanding of the molecular events of high temperature-inhibited chlorophyll degradation and provide a feasible strategy to alleviate green ripening of banana fruit.


Assuntos
Musa , Musa/química , Temperatura Baixa , Temperatura Alta , Regiões Promotoras Genéticas , Clorofila/análise , Frutas/química , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
15.
Carbohydr Polym ; 302: 120368, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36604048

RESUMO

The rapidly growing electronic and plastic waste has become a global environmental concern. Developing advanced and environmentally safe agro-based materials is an emerging field with an enormous potential for applications in sensors and devices. Here, an agro-based material as membrane has been developed by incorporating tapioca starch and banana peel powder in polylactic acid, with uniform dispersibility and amorphous nature. The material was used for the development of electrochemical sensor for S-gene of SARS-CoV-2. Further, the membrane was used for the development of a non-invasive, colorimetric skin patch for the detection of glucose and a sensor for the assessment of fruit juice quality. Using OECD-recommended model systems, the developed membrane was found to be non-toxic towards aquatic and terrestrial non-target organisms. The developed conductive material opens new avenues in various electrochemical, analytical, and biological applications.


Assuntos
Técnicas Biossensoriais , COVID-19 , Manihot , Musa , Musa/química , Colorimetria , COVID-19/diagnóstico , SARS-CoV-2 , Amido/química
16.
J Hazard Mater ; 446: 130665, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36592559

RESUMO

Exploring the behavior of pesticide residues in fruits is important for effectively applying pesticides and minimizing the risk of pesticide exposure to humans. However, most studies do not consider in situ visual analysis of residues and migration patterns in fresh fruit samples. We investigated the migration patterns of thiram, propamocarb, imidacloprid and pyraclostrobin in fresh bananas based on ambient mass spectrometry imaging, metabolome and transcriptome analysis. The systemic pesticides entered via lateral penetration and vertical migration over time, which began to internally migrate to the inner core after 6 h. The non-systemic pesticide thiram did not enter the interior of the bananas, and remained only in the peel. The transportation rate of the pesticides increased with the decrease of water-octanol partition coefficient and the relative molecular mass. Moreover, the pesticide migrated fast with the increase of banana ripeness. The pesticides significantly enhanced pyruvate kinase, NADP-dependent malic enzyme, and malate synthase activities in the banana peels through carbohydrate metabolism. The banana pulp was also protected against the external toxicity of pesticides by the ascorbate-glutathione cycle. These results can provide guidelines for the appropriate application of pesticides and their safety evaluation.


Assuntos
Musa , Resíduos de Praguicidas , Praguicidas , Humanos , Resíduos de Praguicidas/análise , Musa/química , Tiram/análise , Praguicidas/análise , Frutas/química , Metaboloma , Espectrometria de Massas em Tandem/métodos
17.
Nat Prod Res ; 37(3): 383-388, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34507519

RESUMO

Four new compounds, basjoochromene A (1), basjoochromene B (2), basjoochromene C (3) and basjoochromene D (4) were isolated from the 70% ethanol extract of the rhizomes of Musa basjoo using column chromatography techniques. Their structures were elucidated on the basis of spectroscopic data interpretation, mass spectrometric analyses.


Assuntos
Musa , Rizoma , Rizoma/química , Musa/química , Espectrometria de Massas , Estrutura Molecular
18.
Plant Foods Hum Nutr ; 78(1): 52-60, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36301415

RESUMO

Green banana fruit with high resistant starch (RS) content has a potential to be a nutraceutical ingredient despite having an unpleasant astringency taste and is yet to be fully explored. In this study, the green banana after de-astringency treatment was employed for flour production, and the resulting flour was subjected to modification by the combined treatments of pullulanase debranching and annealing. The banana flour (BF) and the modified flour (MF) were compared with each other by evaluating their functional, thermal and structural properties. The BF showed a restricted-swelling pasting profile, behaving like a slightly chemically cross-linked starch; the MF exhibited less pronounced changes in pasting behavior with increased solubility and decreased swelling power and dispersed volume fraction at elevated temperatures. As compared with the BF, an enhanced thermal stability of the MF was observed, reflected in the endotherm shifting to higher temperatures with increased enthalpy. The BF displayed a CA-type polymorph, while the MF comprised a mixture of B- and V-type polymorphs with increased crystallinity. The MF showed an increased molecular order, reflected in an increase in short-range double helical order detected in the starch fingerprint regions of FT-IR spectra, and along with increased crystallinity, underlying its enhanced thermal stability. The modification treatment resulted in irregularly shaped flour particles with a more compact structure as revealed by morphological characters. The results of this study can provide useful information for the development of food products using the modified green banana flour with improved thermal stability and functional properties as a health-promoting ingredient.


Assuntos
Farinha , Musa , Farinha/análise , Musa/química , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Solubilidade
19.
Food Chem ; 403: 134380, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36194931

RESUMO

Banana fruits have attracted considerable attention for health-promoting effects attributed to ubiquitous functional metabolites. However, genotype-dependent accumulation patterns of carotenoids in banana remain largely unclear. Here, we performed a systematic metabolomic investigation of 18 banana cultivars of the AAA, AAB, or ABB genome groups. Our results indicate that the levels of soluble sugars increase during postharvest ripening regardless of genotype, whereas amino acids (AAs) and tricarboxylic acid (TCA) cycle-derived organic acids display genotype-dependent patterns. The levels of AAs derived from the glycolytic pathway increased, whereas those derived from the TCA cycle significantly decreased during ripening. The carotenoid composition in banana pulp was genotype-specific, and the contents of α-carotene were the highest in AAA-genome bananas. Moreover, high α-carotene and ß-carotene contents in banana were correlated with elevated levels of TCA cycle-derived AAs and decreased levels of glycolysis-derived AAs. Taken together, these findings provide a comprehensive understanding of genotype-associated carotenoid accumulation, thereby facilitating the breeding of future high carotenoid banana cultivars.


Assuntos
Musa , Musa/química , Melhoramento Vegetal , Carotenoides/análise , Frutas/química , Genótipo
20.
Environ Sci Pollut Res Int ; 30(28): 71482-71490, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36376649

RESUMO

Banana harvesting generates a large amount of banana pseudostem waste, which is generally burnt or thrown away, despite containing many nutrients. Bio-enriched organic fertilizer (BOF) was prepared from banana pseudostem sap (BPS), and it has been patented (Patent No. WO 2013/001478 Al). Several reports revealed that its application increases plant growth promotion of various horticulture crops. Apart from macro- and micronutrients, it also contained phytohormones. Hence, the present study aims to detect and quantify phytohormone in it. A novel method was developed to extract four phytohormones, viz., indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), gibberellic acid (GA3), and salicylic acid (SA) using single solvent from BPS and BOF. Extracted hormones were analyzed by ultrahigh-performance liquid chromatography coupled with heated electrospray ionization tandem mass spectrometry (UHPLC-HESI-MS/MS). BOF showed a higher concentration of IAA, IBA, GA3, and SA than BPS. Thus, this is the first time a method has been reported to extract and detect phytohormones from banana pseudostem sap.


Assuntos
Musa , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Musa/química , Fertilizantes/análise , Ácido Salicílico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...